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Size distribution effect on the power law regime of the structure factor of fractal aggregates

C. M. Sorensen and G. M. Wang
Department of Physics and Program for Complex Fluid Flows, Kansas State University, Manhattan, Kansas 66506-2601

~Received 18 February 1999!

We consider the largeqRg , whereq is the magnitude of the scattering wave vector andRg is the aggregate
radius of gyration, part of the structure factor of fractal aggregates, and quantify the coefficientC of the power
law, S(q);C(qRg)2D, whereD is the fractal dimension, for various structure factors proposed in the litera-
ture. With the aid of earlier work, we conclude the most accurate structure factors haveC51.0. We then
calculate the effects of polydispersity on this coefficient, and show the effects are significant, enough so to
allow a measurement of the distribution width. These concepts are accurately supported with scattering data
from a diffusion limited aerosol and a reaction limited colloid.@S1063-651X~99!05112-0#

PACS number~s!: 61.43.Hv, 78.35.1c, 82.70.2y, 61.10.Eq
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I. INTRODUCTION

Scattering techniques can provide detailed information
garding the size and morphology of clusters of partic
@1–6#. These techniques involve measurement of the s
tered intensityI (q) as a function of the magnitude of th
wave vectorq, which is dependent on the scattering ang
The basis for the interpretation of these measurements
knowledge of the relationship between the structure fac
which is the I (0) normalized scattering intensity, and th
real-space structure of the aggregate. Furthermore, the
cess of aggregation which creates the aggregates in aer
and colloids leads to a distribution of aggregate sizes, and
effects of this distribution on the shape ofI (q) vs q must be
understood.

Aggregates formed by the destabilization of aerosols
colloids have a fractal morphology@7–9#. These self-similar
clusters are well described by

N5k0~Rg /a!D, ~1!

whereN is the number of primary particles or monomers
the aggregate,k0 is a constant of order unity,Rg is the radius
of gyration of the aggregate,a is the monomer radius, andD
is the fractal dimension. In this paper we first review p
work @6–10# regarding the possible forms of the single clu
ter structure factor of fractal aggregates, show that the v
ous forms differ in the largeqRg regime of the structure
factor, and make a conclusion regarding the correct fo
We then calculate the effects of polydispersity in aggreg
size on the largeqRg regime, and find that these can b
significant. Consequently, one important conclusion is t
use of the single aggregate structure factor for analysis
scattering data from polydisperse ensembles, which is alm
always the case, is erroneous. A beneficial consequenc
that the largeqRg regime contains information regarding th
aggregate size distribution. We demonstrate the facility
this concept with scattering data from both an aggrega
aerosol, which creates diffusion limited cluster aggrega
~DLCA!, and an aggregating colloid, which creates react
limited cluster aggregates~RLCA!, and quantitatively mea
sure the effective width of the distribution.
PRE 601063-651X/99/60~6!/7143~6!/$15.00
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II. STRUCTURE FACTOR OF SINGLE AGGREGATES

The structure factor and the density autocorrelation fu
tion of the aggregate are Fourier transform pairs; thus

S~q!5E eiqW •rWg~rW !drW. ~2!

For a fractal aggregate the autocorrelation function has
form

g~r !;r D2dh~r /j!. ~3!

HereD is the fractal dimension,d the spatial dimension, and
j a measure of the linear size of the aggregate proportiona
the radius of gyrationRg . The functionh(r /j) is the cutoff
function describing the perimeter of the aggregate. Its pr
erties are thath(r /j&1).1, but for larger /j it falls off
faster than any power law. With form~3!, the Fourier trans-
form of Eq.~2! leads to a structure factor, which in the pow
law regime is given by

S~q!5C~qRg!2D, qRg@1. ~4!

This form for S(q) has two parts: the power law (qRg)2D,
which is due to the power law part of the autocorrelati
function r D2d; and the coefficientC, which is dependent
upon the cutoff functionh(r /j). It is convenient to quantify
the cutoff function by writing

h~r /j!5e2~r /j!b
. ~5!

Large b yields a sharper cutoff. Nicolaiet al. @11# showed
that the sharper the cutoff, the smaller the value ofC.

A variety of single aggregate structure factors has b
proposed, some of which are based on Fourier inversion
the density autocorrelation function and some of which
empirically motivated. We have reviewed some of the
structure factors in previous work@6,10#. A more complete
review is given here in Table I. Also in Table I we no
include the largeqRg coefficientC in Eq. ~4!. TheseC val-
ues are plotted as a function of the fractal dimensionD in
Fig. 1. Figure 1 shows that in the rangeD51.7– 2.1, which
7143 © 1999 The American Physical Society
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TABLE I. Structure factors and cutoff functions.

Name h(r /j) j2 S(q) C Reference

Exponential e2r /j
2Rg

2

D~D11!

sin@~D21!tan21~qj!#

~D21!qj~11q2j2!~D21!/2

sin@~D21!p/2#

D21 FD~D11!

2 GD/2 @3,12#

Gaussian e2(r /j)2
4

D
Rg

2 e2~qRg!2/D
1F1S32D

2
,
3

2
,
~qRg!

2

D D
1F1 is the Kummer or

hypergeometric function

DD/2
G~3/2!

GS 32D

2 D
@10#

Mountain and
Mullholland

e(2r /j)2.5 - numerical ca. 0.77 forD51.8 @13#

Overlapping
Spheres 5S43pj3D~11r/4j!

(12r /2j)2, r ,2j
50,r .2j

~D12!~D15!

2D~D11!
Rg

2
numerical ca. 1.07 forD51.75 @14#

Fisher-Burford ca.e2r /j
Rg

2

3
S11

2

3D
q2Rg

2D2D/2 (3D/2)D/2 @3,15#

Dobbins and
Megaridis

- - exp@2(qRg)
2/3#, smallqRg

C(qRg)2D, largeqRg

join with continuous slope

(3D/2e)D/2 @16#

Lin et al. - -

( F11(
n51

4

Cs~qRg!
2gG2D/8 @17#

DLCA: C158/3D, C252.5
C3521.52,C4521.02

12D/400

RLCA: C158/3D, C253.13
C3522.58,C450.95

11D/160
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is the range of DLCA to RLCA aggregates, a value ofC
.1 is obtained, except for the exponential and Fish
Burford structure factors.

The relevant question now is what cutoff, hence wh
structure factor, best describes fractal aggregates. Prev
work from this laboratory considered light scattering fro
soot fractal aggregates in flames@10#. It was found that struc-

FIG. 1. CoefficientC of the largeqRg , power law regime of the
single cluster structure factorS(q)5C(qRg)2D as a function ofD
for various structure factors. Structure factors are: expo, expo
tial; Gaus, Gaussian; FB, Fisher-Burford; DM, Dobbins and Me
ridis; L, Lin et al.
r-

t
us

ture factors derived from autocorrelation functions w
roughly Gaussian,b52, cutoffs gave the best fits to the da
when the effect of the aggregate polydispersity was includ
The structure factor derived from the exponential,b51, cut-
off did a poor job of fitting the data, as did the Fishe
Burford form which approximates the exponential structu
factor. Subsequently we used TEM images of soot agg
gates thermophoretically captured from a flame to comp
g(r ) directly @18#. Again cutoffs much sharper than expo
nential, and well described by a Gaussian, were found.
et al. @17# created both DLCA and RLCA aggregates wi
computer simulation. These were Fourier transformed
S(q) and then an averageS(q) was fit to a polynomial in
qRg . These are given in Table I. Nicolaiet al. @11# fitted
both these DLCA and RLCAS(q)’s to structure factors de
rived from Eqs.~2! and ~3! with arbitrary b and foundb
52 fit best. Recently, Hawet al. @19# also concluded a cut
off significantly faster than exponential is necessary to
scribe scattering data.

Given the experimental evidence in favor of a structu
factor derived from a Gaussian cutoff and the agreemen
the coefficientC in the relevant range of fractal dimension
with other empirically based structure factors, we shall ta
C51.060.05 as the best value to describe the power l
regime of the structure factor of a single aggregate withD in
the range 1.7–2.1.

III. STRUCTURE FACTOR OF AN ENSEMBLE
OF POLYDISPERSE AGGREGATES

Any real experiment detecting scattered radiation from
ensemble of fractal aggregates will involve a polydispe

n-
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~in cluster size! ensemble. Aggregates are a result of agg
gation which always gives a finite width to the cluster s
distribution. This polydispersity causes the shape of the
served structure factor to be different than that of the sin
cluster structure factor. The single cluster structure fac
dependent on the cutoff andD, was described above. Now
we consider how the shape is modified by a distribution
cluster sizes.

To determine the effective optical structure factor for
ensemble of aggregates, we will use the Rayleigh-Deb
Gans~RDG! approximation for light scattering from an ag
gregate. This approximation assumes no significant intrac
ter multiple scattering, hence the differential scattering cr
section for the aggregate is related to the differential sca
ing cross section of the monomer by@6#

dsagg

dV
5N2

dsmon

dV
S~qRg!. ~6!

If the monomer is in the Rayleigh regime specified byka
52pa/l,1, then@20#

dsmon

dV
5k4a6F~m!, ~7!

where

F~m!5Um221

m212U
2

, ~8!

and m is the index of refraction. This RDG approximatio
has been tested both experimentally@21# and theoretically
@22#, and found to be good to;10% for fractal aggregate
with D.1.8.

In an experiment the structure factor is determined
measuring the scattered intensity as a function of the w
vectorq, where

q54pl21 sinu/2. ~9!

q is varied by changing the scattering angleu. This scattering
is normalized by theq→0 scattered intensity, i.e., the sca
tering intensity in the Rayleigh regime of the aggregat
Thus, in general, the effective structure factor for an
semble of aggregates can be written as

Seff~q!5E N2n~N!S@qRg~N!#dN/E N2n~N!dN.

~10!

In Eq. ~10!, n(N) is the size distribution, i.e., the number
clusters per unit volume withN monomers per cluster. Th
number of monomers per cluster and the cluster radius
gyration are related by Eq.~1!.

Useful analytical solutions to the polydispersity proble
in the power law regime can be obtained if we ignore
Guinier regime nearqRg;1 and represent the single aggr
gate structure factor by its Rayleigh and power law limits

S~q!51, qRg!1 ~11a!

5C~qRg!2D, qRg@1. ~11b!
-
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To compute the results of Eq.~10! applied to Eq.~11!, we
define thei th moment of the size distribution as

Mi5E Nin~N!dN. ~12!

Then with Eq.~1! we find

Seff~q!51, qRg!1 ~13a!

5
M1

M2
k0C~qa!2D, qRg@1. ~13b!

The structure factor, in its most economical form, is t
Rayleigh normalized scattering as a function of the unitl
variableqRg . Thus we requireS(q) as a function ofqRg ,
whereRg is the ‘‘average’’Rg measured by the experimen
Since the experiment is scattering, the average is determ
by the scattering. The averageRg is best determined from
analysis of scattering in the Guinier regime@1,2#. One can
show by expansion of Eq.~2! that for qRg&1 the structure
factor will have the form

S~q!512 1
3 q2Rg

2. ~14!

This is called the Guinier equation and is quite general,
dependent of the form ofg(r ). It provides a convenient way
to measureRg , since a plot of inverseS(q) versusq2 will be
linear with slopeRg

2/3. This is essentially the method pro
posed long ago by Zimm@23# for biophysical applications,
and has also seen extensive use for sizing of fractal ag
gates@24,25#.

Scattering from a polydisperse system of aggregates
yield the effective structure factor in Eq.~10!. Substitution of
Eq. ~14! into Eq. ~10! yields, with the definition of moments
in Eq. ~12! and the fundamental scaling relation~1!,

Rg,z
2 5a2k0

22/D M212/D

M2
. ~15!

In Eq. ~15! Rg,z is the ‘‘z-averaged’’ radius of gyration
which is an average ofRg weighted by the second momen
of the size distribution.

Recalling once again the laboratory, the experimenta
will measure an uncalibratedI (q), and normalize it with the
Rayleigh regime scatteringI (0) to obtain Eq.~13!. He or she
will then use the Guinier regime to determineRg,z @Eq. ~15!#.
Then he or she will plotI (q)/I (0) versusqRg,z to obtain the
structure factor of the ensemble. Thus one uses Eqs.~13! and
~15! and substitute onk0a2D to obtain

Seff~q!51, qRg,z!1 ~16a!

5C
M1

M2
S M212/D

M2
D D/2

~qRg,z!
2D, qRg,z@1.

~16b!

The most notable result in Eqs.~16! is that the coefficient
of the power law is modified by the polydispersity of th
ensemble. If this modifying factor is significantly differen
than unity, then use of single cluster structure factors
analysis of scattering data could yield erroneous result
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consideration that seems to have been missed in some p
ous work. The result also opens an opportunity to meas
to some degree, the polydispersity of the ensemble.

We define the polydispersity factor in Eq.~16b! as

Cp5
M1

M2
S M212/D

M2
D D/2

. ~17!

Then Eq.~16b! becomes

Se f f~q!5CCp~qRg,z!
2D, qRg,z@1. ~18!

Given a size distribution, the polydispersity factorCp can
be calculated. It is well established that an aggregating
tem develops a self-preserving, scaling distribution@26,27#
given by

n~N!5M1s2
22f~x!, ~19!

where

f~x!5Ax2te2ax, ~20!

andx is the relative size

x5N/s2 . ~21!

In the equations aboves25M2 /M1 is a mean size, andA
anda522t are constants determined by the normalizati
The exponentt is a measure of the width of the distributio
with larget, implying a broad distribution. It is equal to th
coagulation kernel homogeneity for a certain class of kern
including DLCA. This scaling form is valid whenx.1, the
small x form being different and described in Ref.@27#.
Since scattering strongly weights the large end, i.e.,x.1,
part of the distribution, the smallx part has little effect on the
properties of scattering from an ensemble of aggregates
hence can be ignored.

Other forms for the size distribution of aggregates ex
but caution must be exercised in their use. For example
intuitive log normal distributions are frequently used in t
literature. However, we have shown@25# that these distribu-
tions yield erroneous values for distribution moments hig
than the second when compared to the exact scaling d
bution. Since scattering involves higher moments, such
M212/D.M3 for D.2, it would be erroneous to use the
distributions for light scattering analysis.

With this scaling distribution, the moments of Eq.~12! are
found to be

Mi5M1s2
i 21Aat2 i 21G~ i 112t!, ~22!

whereG(x) is the gamma function. Substitution of Eq.~22!
into Eq. ~17! yields the polydispersity factor to be

Cp5
1

22t FG~32t12/D !

G~32t! GD/2

. ~23!

In Fig. 2 we graphCp as a function of the width parametert
for a variety of fractal dimensionsD. In general, we findCp
to be significantly greater than unity; thus our warning not
use single cluster structure factors for analysis of scatte
experiments involving a polydisperse ensemble of agg
vi-
e,

s-

.

ls

nd

t
e

r
ri-
s

g
-

gates is quite appropriate. In particular, for DLCA it is e
pected and well verified thatt50 andD51.75; then from
Eq. ~23! or Fig. 2 we findCp51.53. Most importantly, Eq.
~23! affords the opportunity to measure the distributi
width parametert. Below we apply this to successfully mea
sure t in both the DLCA and RLCA regimes. Koylu@28#
made an analysis of the power law regime to measure
size distribution width similar to ours. However, his meth
requires measurement of the absorption of the aerosol or
loid, and hence requires the particulate index of refractio

IV. EXPERIMENTAL METHOD

We performed static light scattering measurements on
fractal aggregate systems: A TiO2 aerosol which created
DLCA aggregates withD51.7, and a polystyrene colloid
which created RLCA aggregates withD52.15.

The TiO2 aerosol was generated by thermal decompo
tion of titanium tetraisopropoxide~TTIP!, similar to the
method reported by Okuyamaet al. @29#. TTIP vapor was
produced by heating the liquid TTIP to temperatures arou
80 °C. This vapor was carried into a half meter long tu
furnace at 400° by dry N2 gas at a flow rate of 0.5 liter pe
minute. The decomposition of TTIP vapor took place insi
the furnace to create spherical TiO2 particles with a diameter
of 70610 nm. A stainless steel cylindrical chamber~inside
diameter 20 cm, height 35 cm! was used to contain the fres
aerosol. At the middle height of the chamber, a curved gl
window allowed for light scattering measurements at scat
ing angles fromu50° to 120°.

The colloid was made by diluting the original polystyren
sphere solution~uniform latex microspheres, diameter 2
nm, Duke Scientific Corp.! 10 000 times with distilled water
This resulted in an initial number density 9.631011cm23. A
glass container~inside diameter 8 cm, height 12 cm! was
used to hold the colloid for the light scattering measu
ments. Addition of 0.07 mole NaCl into the colloid induce
a reaction limited cluster aggregation.

A vertically polarized Ar ion laser with wavelengthl

FIG. 2. Polydispersity factorCp for the largeqRg , power law

regime of the structure factorS(q)5CCp(qRg,z)
2D for an en-

semble of clusters as a function of the width parametert of the
scaling size distribution for three values of the fractal dimensionD.
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5488 nm was employed in this research. The experime
were normally started atu52° and ended at 120°, avoidin
the spots of incident beam. This led to the wave vector ra
of q50.45 to 22mm21 for the aerosol, and 0.59 to 29.
mm21 for the colloid.

V. RESULTS AND DISCUSSION

Figures 3 and 4 show the Rayleigh normalized scatte
intensity, hence the structure factor of the ensemble of
gregates, for the aerosol and colloidal systems, respectiv
These are plotted versusqRg,z , i.e., the scattering wave vec
tor times thez-averaged radius of gyration measured in t
Guinier regime. Lines in these plots show the power l
dependencies with fractal dimension ofD51.7 and 2.1, re-
spectively.

The monomer sizes area53567 and 1461 nm, and the
aggregate radii of gyration are 790 and 430 nm, respectiv
ThusN ~with k051.3 @18#! is in the range 260–2000, show
ing that each system is mature from an aggregation poin
view. This is what we need to have a significant power l
regime, which is apparent in both Figs. 3 and 4, so that
can now fit these regimes to Eq.~18!. In fitting to Eq.~18!, a
criterion had to be used to determine the minimum value
qRg,z to be used in the fit. We did this by constraining the

FIG. 4. Structure factor for a polystyrene colloid.

FIG. 3. Structure factor for a TiO2 aerosol.
ts

e

d
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ly.

y.

of

e

f
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to qRg,z>5 ~see Fig. 1, Ref.@10#!.
Five different aerosol and two different colloid structu

factors were fit with Eq.~18!. The results are contained i
Table II. Both sets of fractal dimensions,D51.7 for the
aerosol and 2.15 for the colloid, are consistent with the
pected DLCA and RLCA regimes of these two systems@9#.
The values of the coefficient are significantly different fro
each other and from 1. To illustrate these differences, in F
5 we plot the quantity (qRg,z)

DS(qRg,z) vs qRg,z . By Eqs.
~16! and~18!, such a log-log plot should rise for smallqRg,z
with slopeD, and then level off for largeqRg,z to a constant
equal toCCp . This proves to be true in Fig. 5 to dramat
cally demonstrate the difference between the DLCA a
RLCA structure factors caused by the polydispersity~as op-
posed to the difference in fractal dimension caused by
structure!. If we take the single cluster structure factor coe
ficient to beC51, as concluded above, then the measu
Cp values are those tabulated in Table II.

When theseCp values are compared to Fig. 2 or Eq.~23!,
values of the exponentt can be determined, and these valu
are also given in Table II. For the aerosol the averaget of the
five runs is^t&50.2460.23. This is consistent with the ex
pected value oft50 for DLCA @27#, although on the edge
of the error range. For the colloid we find̂t&51.560.2.
This is in good agreement with previous work, both expe
mental@30–32# and theoretical@33,34#, for RLCA aggrega-
tion.

FIG. 5. (qRg,z)
DS(qRg,z) plotted vsqRg,z for a DLCA aerosol

and a RLCA colloid. The constant level at largeqRg,z is, by Eq.
~18!, equal toCCp .

TABLE II. Results of fitting to Eq.~18!.

Systems D Cp (C51) t

Aerosol 1 1.66 1.57 0.08
Aerosol 2 1.65 1.71 0.46
Aerosol 3 1.71 1.69 0.42
Aerosol 4 1.73 1.64 0.31
Aerosol 5 1.72 1.53 20.05
Colloid 1 2.11 2.6 1.38
Colloid 2 2.18 3.6 1.65
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VI. CONCLUSIONS

For a single aggregate the largeqRg power law regime
carries information regarding the fractal dimension of t
aggregate, in the power ofqRg , and, regarding the sharpne
of its perimeter, in the coefficient of the power law. Th
coefficient is well described by 1.0 for DLCA and RLC
aggregates. Scattering from a polydisperse system of ag
gates yields an effective structure factor which, except
systems with large polydispersity@11#, retains the negative
fractal dimension power law dependency of a single agg
,

.

g

s-

s

ll
re-
r

-

gate. The coefficient, however, is significantly altered. O
experiments demonstrate the validity of this and the use
ness for measuring the polydispersity. Moreover, pro
analysis must include these polydispersity effects and not
the single cluster structure factor.
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